4,768 research outputs found

    Bianchi Type III String Cosmological Models with Time Dependent Bulk Viscosity

    Full text link
    Bianchi type III string cosmological models with bulk viscous fluid for massive string are investigated. To get the determinate model of the universe, we have assumed that the coefficient of bulk viscosity (ξ\xi) is inversely proportional to the expansion (θ\theta) in the model and expansion (θ\theta) in the model is proportional to the shear (σ\sigma). This leads to B=ℓCnB = \ell C^{n}, ℓ\ell and nn are constants. The behaviour of the model in presence and absence of bulk viscosity, is discussed. The physical implications of the models are also discussed in detail.Comment: 11 pages, no figur

    Bianchi Type I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in General Relativity

    Full text link
    Bianchi type I massive string cosmological model with magnetic field of barotropic perfect fluid distribution through the techniques used by Latelier and Stachel, is investigated. To get the deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The magnetic field is due to electric current produced along x-axis with infinite electrical conductivity. The behaviour of the model in presence and absence of magnetic field together with other physical aspects is further discussed.Comment: 10 pages, no figure. Chin. Phys. Lett., Vol. 24, No. 8 (2007), to appea

    Neuroretinal Rim Area and Body Mass Index

    Get PDF
    Purpose: To examine associations between neuroretinal rim area, pressure related factors and anthropometric parameters in a population-based setting. Methods: The population-based cross-sectional Beijing Eye Study 2006 included 3251 subjects with an age of 45+ years. The participants underwent a detailed ophthalmic examination. Exclusion criteria for our study were high myopia of more than-8 diopters and angle-closure glaucoma. Results: The study included 2917 subjects with a mean age of 59.869.8 years (range: 45–89 years). Mean neuroretinal rim area was 1.9760.38 mm 2, mean intraocular pressure 15.663.0 mmHg, mean diastolic blood pressure 79.065.9 mm Hg, mean systolic blood pressure 133.5611.1 mmHg, and mean body mass index was 25.563.7. In univariate analysis, neuroretinal rim area was significantly associated with optic disc size, open-angle glaucoma, refractive error, age and gender. After adjustment for these parameters in a multivariate analysis, a larger neuroretinal rim area was significantly correlated with a higher body mass index (P,0.001), in addition to be associated with a lower intraocular pressure (P = 0.004), lower mean blood pressure (P = 0.02), and higher ocular perfusion pressure. Conclusions: In a general population, neuroretinal rim as equivalent of the optic nerve fibers is related to a higher body mass index, after adjustment for disc area, refractive error, age, gender, open-angle glaucoma, intraocular pressure, blood pressure and ocular perfusion pressure. Since body mass index is associated with cerebrospinal fluid pressure, the latter ma

    String Cosmology in Anisotropic Bianchi-II Space-time

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological model representing massive strings. The energy-momentum tensor, as formulated by Letelier (1983), has been used to construct a massive string cosmological model for which the expansion scalar is proportional to one of the components of shear tensor. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter in Bianchi-II space-time. A comparative study of accelerating and decelerating modes of the evolution of universe has been carried out in the presence of string scenario. The study reveals that massive strings dominate the early Universe. The strings eventually disappear from the Universe for sufficiently large times, which is in agreement with the current astronomical observations.Comment: 11 pages, 6 figures (To appear in Mod. Phys. Lett. A) In this version, the cosmic string has been directed along z-direction and the resultant field equations have been solved exactl

    The decay rate of ψ(2S)\psi(2S) to Λc+Σ+ˉ\Lambda_c+\bar{\Sigma^+} in SM and beyond

    Full text link
    With rapid growth of the database of the BES III and the proposed super flavor factory, measurement on the rare ψ(2S)\psi(2S) decays may be feasible, especially the weak decays into baryon final states. In this work we study the decay rate of ψ(2S)\psi(2S) to Λc+Σ+‾\Lambda_c+\overline{\Sigma^+} in the SM and physics beyond the SM (here we use the unparticle model as an example). The QPC model is employed to describe the creation of a pair of qqˉq\bar q from vacuum. We find that the rate of ψ(2S)→Λc+Σ+‾\psi(2S)\rightarrow \Lambda_c+\overline{\Sigma^+} is at order of 10−1010^{-10} in the SM, whereas the contribution of the unparticle is too small to be substantial. Therefore if a large branching ratio is observed, it must be due to new physics beyond SM, but by no means the unparticle.Comment: 9 pages, 1 figure

    Phenomenological study of hadron interaction models

    Get PDF
    We present a phenomenological study of three models with different effective degrees of freedom: a Goldstone Boson Exchange (GBE) model which is based on quark-meson couplings, the quark delocalization, color screening model (QDCSM) which is based on quark-gluon couplings with delocalized quark wavefunctions, and the Fujiwara-Nijmegen (FN) mixed model which includes both quark-meson and quark-gluon couplings. We find that for roughly two-thirds of 64 states consisting of pairs of octet and decuplet baryons, the three models predict similar effective baryon-baryon interactions. This suggests that the three very different models, based on different effective degrees of freedom, are nonetheless all compatible with respect to baryon spectra and baryon-baryon interactions. We also discuss the differences between the three models and their separate characteristics.Comment: 30 pages latex, 7 tables, 12 figs; submitted to Phys. Rev.

    Proteasome Inhibition Augments Cigarette Smoke-Induced GM-CSF Expression in Trophoblast Cells via the Epidermal Growth Factor Receptor

    Get PDF
    Maternal cigarette smoking has adverse effects on pregnancy outcomes. The granulocyte-macrophage colony-stimulating factor (GM-CSF) is an essential cytokine for a normal pregnancy. We investigated the impact of cigarette smoke extract (CSE) on GM-CSF expression in human cytotrophoblast cells and suggested a cellular mechanism underlying the CSE-induced GM-CSF expression. An immortalized normal human trophoblast cell line (B6Tert-1) was treated with CSE. The viability and proliferation of the CSE-treated B6Tert-1 cells were evaluated, and the expression of GM-CSF in these cells was quantified at the mRNA and the protein levels by means of reverse-transcription and quantitative polymerase chain reaction (RT-qPCR); and enzyme-linked immunosorbent assay (ELISA), respectively. Human trophoblast cells treated with CSE had an increased expression of GM-CSF at both the mRNA and the protein levels. The CSE-induced GM-CSF expression was synergistically enhanced by the addition of the proteasome inhibitor MG-132, but inhibited by AG-1478, an inhibitor of the epidermal growth factor receptor (EGFR) kinase. Furthermore, CSE treatment increased the phosphorylation of the extracellular-signal regulated kinases (ERK1/2) in the trophoblast cells. The expression of other growth factors such as heparin-binding epidermal growth factor-like growth factor (HB-EGF) and vascular endothelial growth factor (VEGF) was also evaluated. Our data suggested that cigarette smoking and proteasome inhibition synergistically up-regulate GM-CSF cytokine expression by activating the EGFR signaling pathway

    Yang-Mills Radiation in Ultra-relativistic Nuclear Collisions

    Get PDF
    The classical Yang-Mills radiation computed in the McLerran-Venugopalan model is shown to be equivalent to the gluon bremsstrahlung distribution to lowest order in pQCD. The classical distribution is also shown to match smoothly onto the conventional pQCD mini-jet distribution at a scale characteristic of the initial parton transverse density of the system. The atomic number and energy dependence of that scale is computed from available structure function information. The limits of applicability of the classical Yang-Mills description of nuclear collisions at RHIC and LHC energies are discussed.Comment: 21 pages (Latex) including 2 postscript figures via psfi
    • …
    corecore